If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+8v+5=0
a = 2; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·2·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{6}}{2*2}=\frac{-8-2\sqrt{6}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{6}}{2*2}=\frac{-8+2\sqrt{6}}{4} $
| 2/3=-2/3x+3/4 | | -7+2=-6x-71 | | 3w^2-2w+1=0 | | C^2-3x-12=0 | | 9u^2-9u-2=0 | | 4(x+2)+5x-7=180 | | 3x+10=4-x | | 20x-5=2x+7 | | 3r^2+5r+6=0 | | F(x)=12x+2 | | 5c^2-50c+95=0 | | 4z^2+4z+4=0 | | x*x=100*x/2 | | 10x+22=6x+74 | | 6x+30-2×-8=4×-16+20+6× | | 33x-55=5x-195 | | 5c^2-50+95=0 | | 5h-9=6 | | 3f^2+14f+15=0 | | 3r^2-3r+2=0 | | 3x18-8x=-2-10x-5 | | 0=-16t^2+138+55 | | 3r^2-8r-5=0 | | 0=240-20x | | 5t^2-49t-10=0 | | 5t^2~49t-10=0 | | 2-3x=12+7x | | 5/6+x=1/3 | | 20x-5x=15x | | 2x+7+1=10-x/5 | | (6x-4)^1/2=0 | | x*x-x=156 |